AI for modular robots

We research how AI can be used instead of traditional path planning techniques and how robots can learn a given task through imitation

Published results
IMAGE XS

AI-powered API

We propose a layered API for modular robots where AI plays a key role enhancing primitives at diferent levels, making robots more capable.

Robot Builder GIF

Level 1

A developer's oriented API powered by ROS 2.0 and Gazebo. Built on top of the HRIM. We make use of AI techniques to accelerate and enhance modules. Examples include the acceleration of sensor inference or the creation of power-conscious sources that allow us to estimate the consumption of different tasks and trajectories, even before executing them.

Level 2

Aimed for researchers with interest in exploring how Deep Learning can empower robots. This layer provides a variety of techniques (mainly for Reinforcement Learning and for Supervised Learning) built on top basic primitives powered by TensorFlow. All these techniques connect with the underlying layer that interoperates with ROS. A roboticists' approach to AI.

Level 3

User-oriented, this layer aims to provide a simple yet complete set of functions to facilitate the use of robots. We research how AI can be used to enhance traditional path planning techniques and how robots can learn a given task through imitation.



Research products


Robot Builder GIF

robot_gym: accelerated robot training through simulation in the cloud with ROS and Gazebo

We present a framework to accelerate robot training through simulation in the cloud that makes use of roboticists' tools, simplifying the development and deployment processes on real robots. We demonstrate that, for simple tasks, this framework accelerates the robot training time by more than 33%, while maintaining similar levels of accuracy and repeatability.

Read more

Robot Builder GIF

Towards self-adaptable robots: from programming to training machines

We present the concept of a self-adaptable robot that makes use of hardware modularity and AI techniques to reduce the effort and time required to be built. And demonstrate - both with simulation and a real robot- how training, rather than programming, produces behaviors in the robot that generalize fast and produce robust outputs in the presence of noise.

Read more

Robot Builder GIF

Hierarchical Learning for Modular Robots

We introduce a training method that allows a robot to simultaneously learn multiple tasks and offer a demonstration on how this technique generalizes to robots with different configurations and tasks.

Read more

Robot Builder GIF

Evaluation of Deep Reinforcement Learning Methods for Modular Robots

We offer a novel framework for Deep Reinforcement Learning (DRL) in modular robotics, and describe a new technique to transfer these DLR methods into the real robot, aiming to close the simulation-reality gap.

Read more

Robot Builder GIF

gym_gazebo: a toolkit for reinforcement learning using ROS and Gazebo

We propose an extension of the OpenAI Gym for robotics using ROS and the Gazebo simulator. We also introduce a benchmarking system for robotics that allows different techniques and algorithms to be compared using the same virtual conditions.

Read more

Interested?

Contact us